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ABSTRACT 

Background:  Constraint-based computational approaches, such as flux balance analysis 

(FBA), have proven successful in modeling genome-level metabolic behavior for 

conditions where a set of simple cellular objectives can be clearly articulated.  Recently, 

the necessity to expand the current range of constraint-based methods to incorporate 

high-throughput experimental data has been acknowledged by the proposal of several 

methods.  However, these methods have rarely been used to address cellular metabolic 

responses to some relevant perturbations such as antimicrobial or temperature-induced 

stress.  Here, we present a new method for combining gene-expression data with FBA 

(GX-FBA) that allows modeling of genome-level metabolic response to a broad range of 

environmental perturbations within a constraint-based framework.  The method uses 

mRNA expression data to guide hierarchical regulation of cellular metabolism subject to 

the interconnectivity of the metabolic network. 

Results:  We applied GX-FBA to a genome-scale model of metabolism in the gram 

negative bacterium Yersinia pestis and analyzed its metabolic response to (i) variations in 
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temperature known to induce virulence, and (ii) antibiotic stress.  Without imposition of 

any a priori behavioral constraints, our results show strong agreement with reported 

phenotypes.  Our analyses also lead to novel insights into how Y. pestis uses metabolic 

adjustments to counter different forms of stress.  

Conclusions:  Comparisons of GX-FBA predicted metabolic states with fluxomic 

measurements and different reported post-stress phenotypes suggest that mass 

conservation constraints and network connectivity can be an effective representative of 

metabolic flux regulation in constraint-based models.  We believe that our approach will 

be of aid in the in silico evaluation of cellular goals under different conditions and can be 

used for a variety of analyses such as identification of potential drug targets and their 

action. 

 

Keywords: Flux Balance Analysis/ Gene-expression/ Yersinia pestis/ Stress Response/ 

Metabolism 

 

BACKGROUND 

The recent progress in genome sequencing techniques has led to the development of 

genome-level models of metabolism that have been analyzed using constraint-based 

approaches, such as flux-balance analysis (FBA) [1, 2].  The success of FBA stems from 

the fact that, unlike kinetic models, FBA aims to identify optimal metabolic steady-state 

activity patterns that satisfy constraints imposed by mass balance, the metabolic network 

structure, and the availability of nutrients.  The most common cellular task to be 

optimized (the system’s objective function) is that of growth, although other choices are 

possible depending on the selective environment of the cell [3, 4].  The FBA framework 

has been applied to many genome-level models (see e.g. [5-11]) with great success, as 
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well as the systematic prediction of genetic knockout phenotypes [12, 13], the global 

organization of metabolic fluxes [14], and the discovery of novel regulatory interactions 

[15].  However, fulfillment of systems biology’s goal to generate models that integrate 

data from all cellular levels (genomic, transcriptomic, proteomic, metabolomic, etc.), and 

can accurately predict metabolic phenomena under different environmental conditions 

has hitherto been hampered by minimal application of regulatory constraints.   

According to the central dogma of biology, information flows from DNA to mRNA and 

ultimately to enzymes which catalyze and regulate various cellular functions.  Hence, one 

might envision a fully “hierarchical” regulation of metabolism where expression levels of 

mRNA correlate directly with the amount of enzymes and thus with the flux through 

associated reactions.  For some conditions, this simplified assumption can be used for the 

purpose of modeling metabolic activity [16].  However, this type of hierarchical control 

does not take place in general since there are several levels of flux regulation which 

operate separately from the purely genetic.  These mechanisms include variations in 

protein translation, protein activation/inactivation and metabolite regulation of enzymatic 

activity.  Studies have shown that even within one pathway there may exist a variety of 

flux regulatory mechanisms for each reaction that range from purely hierarchical to fully 

metabolic control [17-20].  

The varying role of hierarchical regulation for network reactions has limited the 

utilization of gene-expression data to improve predictions of genome-scale metabolic 

models.  The earliest attempt at imposing transcriptional regulation on constraint-based 

models was conducted by Palsson and coworkers who developed regulatory flux-balance 

analysis (rFBA) [21-25] where, using Boolean logic, a transcriptional regulatory network 
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was superimposed on an FBA model.  rFBA can be used to predict a form of quasi-

dynamic flux profile (i.e. series of steady-state flux profiles) in a changing environment.  

The time course of an experiment is divided into a number of successive short intervals 

and at each time step, new regulations based on metabolic steady state of the previous 

time is formulated.  Next, FBA is used to predict a steady state flux that is consistent with 

the set regulatory rules at that moment.   

Later, Nielsen and coworkers [26] further developed the idea of combined regulatory 

metabolic control by implementing gene-expression data as a Boolean switch to block the 

activity of any reaction for which the responsible mRNA was not expressed.  Further 

progress on this methodology was made when Becker and Palsson [27] introduced the 

Gene Inactivity Moderated by Metabolism and Expression (GIMME) algorithm which 

uses a set of pre-determined thresholds for transition of each gene from “on” to “off”.  

The user selects a priori a minimally acceptable outcome for the FBA models and 

GIMME iteratively activates genes that were initially turned “off” in order to ensure that 

the FBA model achieves its required metabolic functionalities.    

Another method dubbed E-Flux [28] uses gene-expression values to relatively regulate 

the flux that reactions in a model can carry.  In a process akin to “setting the width of 

pipes” in a network, E-flux uses gene-expression data for different conditions to set 

normalized relative upper flux limits on effected reactions and then optimize a previously 

chosen objective function.  Although the method is innovative in that it utilizes the actual 

gene-expression data, it is still limited in that a) it requires a pre-determined objective 

function for the condition associated with the gene-expression data, and b) the flux limit 

for each reaction is purely determined by the value of gene-expression values, and hence 
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is unlikely to account for metabolic regulation. All subsequent advances involve utilizing 

mixed-integer linear programming (MILP) to identify cellular states that optimally adhere 

to both regulatory and metabolic regulations. 

The introduction of steady-state regulatory flux balance analysis (SR-FBA) [29] which 

utilizes MILP to maximize biomass growth while concurrently trying to adhere to the 

maximum number of regulatory constraints, allowed a detailed quantification of the 

extent to which metabolic and transcriptional regulation control the metabolic behavior of 

a cell.  Jensen and Papin further improved this mode of analysis by developing the 

Metabolic Adjustment by Differential Expression (MADE) methodology [30].  This 

method, unlike GIMME, does not require a prior selection of expression thresholds and 

instead uses MILP and the statistical significance of changes in gene-expression to 

develop a metabolic model that recreates the measured expression dynamics while 

ensuring that the FBA model maintains previously determined threshold functionality.  

Although these methods have been useful in qualitatively predicting gene-expression 

patterns and metabolic adjustments between different conditions, they are limited by the 

fact that they require an a priori user-defined objective function and also do not fully 

make use of the predictions of FBA models; thus, a significant portion of the available 

data is not fully utilized. 

Further work by Shlomi et al [31] that has been incorporated in the iMAT algorithm [32] 

uses gene-expression data and a Boolean gene-to-reaction mapping to impose 

hierarchical regulation on a metabolic model. Here, affected reactions are classified based 

on associated gene-expression data as either highly expressed (RH), moderately expressed 

or lowly expressed (RL).  iMAT utilizes MILP to identify a possible steady-state flux 
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distribution among those that maximize the number of reactions with predicted flux 

consistent with the gene-expression data as well as the model’s stoichiometric and 

thermodynamic constraints.  Thus, the goal of iMAT is to maximize the sum of the 

number of reactions in RL that carry a flux of zero, and the number of reactions in RH that 

carry a flux greater than an arbitrarily chosen threshold [31]. Consequently, iMAT 

maximizes only the pattern of hierarchical regulation.  Although the method has been 

successfully applied to model different human tissues (e.g. [33, 34]) and other multi-

cellular organisms [35], the utility of the method is limited since ensuring that active 

reactions carry a minimum flux does not necessarily ensure that the model can predict 

correct cellular objective flux(es).   Despite these deficiencies, iMAT has a strong 

advantage over other methods [26, 27, 29, 30], in that it does not need a predefined set of 

required metabolic functionalities and an FBA objective function.  

Here, we present a new approach that uses gene-expression data to optimize not only the 

pattern of hierarchical regulation, but also the level of differential gene-expression within 

the rigid framework of metabolic constraints placed on a system by the connectivity of 

the reaction network.  Although our steady-state based method does not account for 

capacity limitations in various enzymes, and thus the beneficial, deleterious or regulatory 

role of metabolite concentrations, the model's adherence to conservation of mass balance 

and network connectivity imposes pseudo-metabolic regulation.  The coupled interaction 

of this absolute form of metabolic control with optimal hierarchical control in gene-

expression FBA (GX-FBA) improves our theoretical capabilities for analyses of a wide 

range of phenomena, such as cellular responses to environmental perturbations which 

traditionally have been considered outside the realm of FBA. 
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A recently published approach by Lee et al [36]  is also focused on using actual gene-

expression levels to guide metabolic flux prediction. However, this method differs 

significantly from GX-FBA in that it minimizes the absolute difference between 

metabolic fluxes and gene-expression data from RNA-seq experiment. 

To illustrate the utility of GX-FBA, we have analyzed the genome-scale metabolic model 

for the etiological agent of bubonic plague, the gram-negative bacterium Yersinia pestis 

(YP) [37].   We have studied YP’s genome-scale metabolic response in physiologically 

important conditions: temperature shifts known to induce virulence in low calcium media 

[38, 39], as well as its response to stress induced separately by the antibiotics 

streptomycin and chloramphenicol.  Our analyses open windows into the metabolic 

workings of this bacterium while it survives within macrophages following initial 

introduction into a mammalian host, proliferates in the blood, and attempts to resist 

therapeutic efforts.  Our analyses indicate that majority of cellular metabolic changes 

associated with response to stress is unique to the type of perturbation.  The only 

common adaptive response to all four types of stress was for YP to initiate a series of 

energy saving measures. 

 

 METHODS 

Reconstruction of the metabolic network 

The Yersinia pestis model iAN818m [40] is based on the annotated genome of strain 

91001 [41].  The model was extensively hand-curated to ensure compliance with 

experimental observations, accounting for the activity of 818 of the 1146 metabolism-

related genes (71%) in the genome.  Several studies [42-45] have shown that the 
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composition of YP’s cellular membrane changes when the cell transitions from the flea 

gut environment (high Ca
2+

, 26°C) to that of the mammalian host (low Ca
2+

, 37°C).  This 

phenomenon has been implemented in the model by developing two separate biomass 

compositions.  The model includes the pathways for production of yersiniabactin 

virulence factor; however it currently does not contain the biosynthetic pathways for the 

production of other pathogenic proteins such as yersinia outer proteins.  For a detailed 

summary of the model characteristics and a complete list of the metabolic reactions see 

[40].  Recently, another reconstruction for a virulent strain of YP was developed [46].  

We have used the iAN818m model in our analysis since the gene-expression data are 

collected from avirulent strains that are more closely related to strain 91001. 

 

Flux Balance Analysis (FBA) 

FBA is based on representing known metabolic reactions of an organisms by the 

stoichiometric matrix, S (m×n), where m is the number of metabolites and n the number 

of different reactions.  Applying the assumptions of mass balance and metabolic steady-

state, we find the following set of linear equations governing the system’s behavior: 

0=νS=
dt

dX
jij

i  , 

where Xi is the concentration of metabolite i.  Other limitations that are imposed on a 

system based on experimental studies enforce that the amount of flux through a reaction, 

the amount of nutrients imported, or waste products secreted from the organism have a 

lower and upper boundary: 

βνα i  , 
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φbχ i  , 

where bi and iν  are the export/import flux of metabolite species i, and the flux through 

internal reaction i respectively, and α, β, χ, and φ are the lower and upper limits for these 

fluxes.  Finally, FBA utilizes linear programming to determine a feasible steady-state flux 

vector that optimizes an objective function, most commonly chosen to be the production 

of biomass, i.e. cellular growth. 

 

GX-FBA: Flux optimization constrained by mRNA expression data 

We combine mRNA expression data with a constraint based framework through the 

following multi-step approach.  Note that, we only use mRNA expression data for genes 

that are included in our metabolic model.  Additionally, we choose to only take into 

account gene-expression changes of at least 50% (±0.5 fold change).  We have ensured 

that this particular choice of threshold value does not significantly impact our results. 

Note, however, that if the threshold is set to a large value, only a few constraints are 

imposed on the model, which obviously will have a large impact on the GX-FBA 

predictions.   

We have implemented the GX-FBA algorithm in a script (Supplementary Material) that 

is contingent upon the Cobra Toolbox for Matlab [47] with the Gurobi Optimizer 4.6.0 

linear programming solver (Gurobi Optimization, USA). Our methodology is as follows: 

1. Generate the wild-type flux distribution 
wt

iν  for the starting condition (1) using an 

Interior Point optimization algorithm with biomass growth or any other 

appropriate goal as the objective function. 

2. For nutritional constraints associated with the post-transition environment 



 10 

(condition (2)), flux variability analysis (FVA) [48] with minimal growth rate set 

to zero is utilized to calculate the lower and upper fluxes that each model reaction 

i ( min

iv and max

iv  respectively) can carry solely based on environmental limitations 

and network connectivity.  From these results, the mean possible flux value for 

each reaction i ( iv ) and average flux carried by all active reactions ( allv ) is 

determined. 

3. Identify the set of reactions T for which an mRNA expression value can be 

associated.  Using the results of the FVA analysis (step 2), reactions that carry 

unreasonably high flux values (for case of YP 100iv ) are eliminated, since 

these reactions could cause numerical problems when solving the GX-FBA 

objective function and likely take part in  type III extreme pathways [49].   For 

protein complexes and reactions catalyzed by isozymes, the maximal up- or 

down-regulation value is used unless the mRNA expression values are 

inconsistent (mixture of up- and down-regulation). In the latter case, the reaction 

is excluded from T.   

(3) For each internal metabolic reaction i in T, a new constraint 
wt

i

mRNA

ii νC=β is assigned 

if the mRNA expression is up-regulated, and 
wt

i

mRNA

ii νC=α  if it is down-regulated, 

where 
mRNA

iC  is the mRNA expression ratio and iα  and iβ are the lower and upper 

constraints of flux i.   

(4) Construction of the new objective function: 


Ti i

imRNA

i
ν

ν
C=Z )(log2

. 
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If the wild-type value of a reaction i is zero, wt

iν and iv are set equal to the average 

value for all active reactions ( allv ) and hence: 

 For up-regulated reactions allmRNA

ii νC= . 

 For down-regulated reactions 0=αi . 

Please note that reversible reactions are not included in T and Z.  This is because of 

challenges in reconciling the biochemical concept of reaction flux with mathematics of 

linear programming:  For example, whereas in linear programming a value change from 4 

to -10 is a minimization, in terms of biochemical flux the activity of the enzyme has 

increased by a factor of 2.5.  In order to decrease the number of reversible reactions and 

increase the number of reactions that are included in Z, the result of the FVA analysis is 

used to identify those reactions that although normally reversible, under the conditions 

imposed by environmental constraints carry flux in only one direction.  Subsequently, the 

designations of these reactions in the model are changed and they are included in the 

formulation of Z. Also, note that biomass production is not explicitly included in this 

choice of objective function Z.  When studying the transition of YP from 26°C to 37°C, 

we used the growth of YP in TMH at 26°C as the wild-type reference state.  For the case 

of antimicrobial agents, we used YP growing at 37°C in TMH as the reference state. 

 

Comparison with measured flux measurements 

In order to test the accuracy of GX-FBA’s predictions, we analyzed a set of 

experimentally measured flux changes for yeast growing on 4 different carbon sources 

[50].  We employed their yeast model [50] (derived from Lange [51]) and used the 

reported gene-expression measurements to constrain the GX-FBA model.  We evaluated 
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GX-FBA by calculating the relative deviation between the fluxes for a reaction in two 

conditions as: 

   
   

| |  | |
 

where x is the flux of a reaction in condition 1 and y is the flux of the same reaction in 

condition 2. Since |  |       , we consider    a percentage flux change from condition 

1 to condition 2.  For conditions where both x and y are zero, we define   =0.  Thus, we 

may calculate the average (per reaction) percentage error in GX-FBA predicted flux by 

calculating  

  
 

 
∑|       

      
 

 

   

| 

where the sum is over the N reactions for which there is experimental flux data.   

 

Degeneracy of optimal FBA solutions   

To gauge the effect of degeneracy in the FBA optimal flux state (condition (1) above) on 

the set of GX-FBA solutions, we used the following approach which is a variation on an 

effective random sampling method previously suggested [52]:   

(1) Identify the optimal value of the FBA objective function, Z
*

FBA.  

(2) For each model reaction i, use flux variability analysis [48] to identify a lower and 

upper flux bound 
*

iα and 
*

i  respectively, for which ZFBA=Z
*

FBA is feasible.  

(3) Identify the reaction set R, consisting of all reactions for which
**

iiα  .   

(4) Randomly select a reaction from R and fix its reaction flux to a random value 

].,[ ***

iii α     
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(5) Calculate the FBA optimal flux state subject to .*

ii     

(6) Calculate the GX-FBA optimal flux state using the FBA optimal state in (5).  From 

the resulting flux profile, we determine the value of ZGX-FBA, the maximum and 

minimum growth rate, as well as agreement with proteomic measurements.  

(7) Repeat from step (4).   

For each of our simulations we sampled 25000 different FBA optimal flux states.  

 

RESULTS 

We argue that to properly analyze mRNA experiments for their systems-level impact on 

cellular metabolism, it is necessary to couple these experimental data with a theoretical 

framework that takes metabolic network connectivity and mass conservation into 

account.  In contrast to the expression activity of a single gene, the metabolic activity of a 

reaction not only depends on the expression of the enzyme, but also on the abundance of 

its substrates and products.  Thus, the activity of a single reaction is conditional on the 

structure of the metabolic network as well as the network’s global activity pattern. 

It has previously been observed experimentally that gene-expression profiles provide 

qualitative descriptions of metabolic flux activity [53, 54].  However, while a direct 

coupling between mRNA expression and enzyme activity has been observed for some 

genes, such a quantitative relationship between levels of transcripts and metabolic flux 

does not exist in general [19].  For some genes, it is even observed that the strength of the 

coupling changes with variations in cellular environment, going from direct coupling to 

independent behavior [19].   

By maximizing the qualitative and quantitative agreement between flux profile and gene-
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expression pattern subject to metabolic feasibility, we allow the relationship between 

transcription level and flux to span the full range of possible coupling strengths.  To this 

end, we have developed a new constraint-based approach for combining gene-expression 

data and metabolic flux analysis, GX-FBA, which explicitly takes mass conservation and 

the connectivity of a metabolic network into account (see Methods).  A simple example 

of how GX-FBA implements regulation via gene-expression is presented in Figure 1. 

 

Sample case:  Central carbon metabolism following external perturbation 

 

In Figure 1, we use an abbreviated description of central carbon metabolism to 

demonstrate how GX-FBA incorporates gene-expression data, mass conservation, and 

network connectivity to predict cellular behavior following an external perturbation 

(decrease in oxygen concentration in the medium).  In this simple model (Supplementary 

Material), glucose is the sole nutrient imported into the cell.  As with most FBA 

calculations, we chose maximum biomass (BM) production as the objective function by 

formulating a simple BM reaction composed of carbohydrates and nucleotides (see 

Figure 1).  We finally impose an upper limit on import (export) of glucose (pyruvate) and 

an arbitrary energy maintenance cost of 12 units of ATP.  A complete stoichiometric 

description of this model is included in the Supplemental Material. 

As shown in Figure 1a, FBA predicts that the cell fully uses oxidative metabolism, 

producing ATP with complete conversion of glucose carbons into BM and CO2.  Figure 

1b, displays the possible range of fluxes for reactions 2 and 5 when satisfying both the 

stoichiometric and the import/export constraints of the model.  Due to the fixed energy 

burden associated with cellular maintenance, the flux associated with glycolysis (reaction 

2) can never be zero.  Additionally, the TCA flux cannot be zero for a growth state, since 
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GTP is essential for the production of BM.  

In figure 1c, we impose a possible genetic up/down regulation on select network 

reactions, emulating an incomplete set of expression data for genes associated with 

metabolic reactions.  The expression pattern portrays a possible cellular response to 

decrease in the concentration of oxygen in the medium:  The glyoxylate shunt and 

reactions involved in anaerobic ATP production are up-regulated, whereas reactions 

associated with oxidative energy production are down-regulated.  The displayed reaction 

flux values correspond to the GX-FBA predicted metabolic activity pattern, showing that 

imposition of these gene-expression dictums in combination with the constraints of 

network connectivity lead to a notable decrease in the rate of BM production.  Also, as is 

common with anaerobic metabolism, a large fraction (~77%) of imported carbons is not 

fully utilized, instead being exported as CO2 and malate.  Figure 1d, shows the new 

allowable flux ranges for reactions 2 and 5 when subject to the constraints imposed by 

GX-FBA.  Note that, the glycolytic fluxes increase only by 14%, far less than the 700% 

and 50% up-regulation prescribed by the gene-expression levels.  The two reasons for 

this are:  A) Based on the linear connectivity of the glycolytic pathway, the up-regulation 

of reaction 1 cannot surpass the smaller up-regulation of reaction 2; and B) A further 

increase in glycolysis would produce ATP molecules that cannot be consumed in this 

simple metabolic model, and thus, the absence of a pathway for ATP export limits the 

rate of glycolysis.   

Finally, a direct consequence of the network connectivity is that down-regulation of 

reaction 3 is incommensurate with up-regulation of reaction 7.  Since the GX-FBA flux 

solution corresponds to the activity pattern maximizing its objective function and reaction 
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7 has a greater shadow price (positive contribution to the objective function) than 

reaction 3, reaction 7 is up-regulated while the flux for reaction 3 remains the same.  This 

serves as an example of hierarchical regulation through the gene-expression dictum not 

controlling the final flux activity pattern.  Overall, the predicted GX-FBA solution for 

this sample problem agrees with expected metabolic behavior when oxygen concentration 

in the medium is reduced.       

It is immediately evident that GX-FBA shares certain features with the iMAT method, in 

particular the use of gene-expression data to constrain the overall metabolic activity 

pattern and absence of a need to predetermine required cellular functionalities. However, 

in the following we will point out three significant differences between the two 

approaches.  First, iMAT maximizes the number of up and down regulated reactions, not 

taking into account the magnitude of change in expression level.  Instead, GX-FBA aims 

to maximize the correlation between differential changes in gene-expression and reaction 

fluxes, explicitly taking the level of differential gene-expression into account.  Second, 

GX-FBA does not use a binary criterion for pattern maximization whereby the metabolic 

flux of reactions corresponding to highly expressed genes must exceed an arbitrarily 

chosen threshold value and that of lowly expressed genes should be zero [31].  Third, 

GX-FBA is based on the level of differential gene-expression between two activity states, 

here chosen as the unperturbed wild-type (with maximal growth) and a stress state, 

although other pairs of activity states are possible.  In contrast, iMAT may use as input 

the gene-expression pattern of either a single experiment or the consensus pattern from a 

compendium of experiments, thus forgoing the introduction of an objective function for 

any of the activity states. 
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Application to Saccharomyces cerevisiae metabolic network 

In order to validate GX-FBA’s utility for predicting changes in flux activity based on 

gene-expression data, we used the method to examine the metabolic behavior of S. 

cerevisiae under different nutritional environments.  The experimental flux measurements 

and microarray data are from Daran-Lapujade et al [50].  The metabolic network model 

used for the simulations is the same augmented model developed by Lange [51] that was 

used in [50].  

To compare GX-FBA with the experimental data, we used the measured flux values to 

calculate the relative changes (d) in each reaction’s flux activity as the eukaryote 

transitions between different growth conditions (see Methods).  This calculation was 

repeated for the GX-FBA predicted results using wild-type FBA flux values as reference 

state. The average percentage error (e) (see Methods) between measured and predicted 

flux magnitude changes was calculated, finding on average that e = 21%.   Furthermore, 

to assess the capability of GX-FBA to accurately identify metabolically active reactions 

after a perturbation, we compared the results of our predictions with experimental 

measurements and calculated the average precision (0.88) and recall (0.99) values (see 

Figure 2a).  These results compare favorably to those reported by Shlomi et al. [31]. 

 

Effects of alternate optimal FBA solutions 

The GX-FBA objective function depends on details of the FBA optimal state (see 

Methods), making it necessary to evaluate the possible impact of degenerate optimal 

FBA flux states [55] on the GX-FBA solutions.  Implementing a random sampling 
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approach of the degenerate FBA optimal states (see Methods), we used the S.cerevisiae 

model and gene-expression results to measure the impact on the optimal value of the GX-

FBA objective function, ZGX-FBA (Figure 2b).  We found that approximately 99% of the 

samples are contained within a 10% variation (0.9 to 1.1) of the most likely value for 

ZGX-FBA.  Furthermore, panel 2c demonstrates that the optimal FBA flux state degeneracy 

has minimal impact on the GX-FBA predicted growth rate.  Note that, in the remainder of 

this paper we have ensured that reported responses are robust to degeneracy in the FBA 

optimal state. 

 

Application to Yersinia pestis metabolic network   

YP is one of the most prolific killer organisms of all time. Conservative estimates 

stipulate that 200 million people have been victims of bubonic plague in various 

pandemics throughout human history [56].  There is still no working vaccine available for 

this malady.  While plague is frequently considered a disease of the past, several 

thousand new cases are reported each year, predominantly in Africa [57].  Hence, the 

recent reports of multiple-antibiotic resistant strains of YP [58-60] are cause for great 

concern.  We have applied GX-FBA to four publicly available mRNA expression data 

sets of YP using the published genome-level metabolic model iAN818m [40] and 

identified common motifs of YP metabolic response to different forms of stress.  Table 1 

displays the number of genes and reactions that were constrained in our model for each 

set of mRNA expression results.  In particular, we focused on alterations in gene-

expression of YP following environmental temperature changes [61, 62] and exposure to 

antibiotics [63, 64].  Table 2 summarizes the predicted changes to microbial metabolism 
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following each perturbation. 

 

Genome-level evaluation of metabolic response to temperature perturbations 

We used two available mRNA expression data sets for YP’s response to temperature 

change, one for strain 201 [61] and one for strain KIM5 [62], to examine global changes 

in the cell’s metabolism resulting from this lifecycle transition.  It has previously been 

demonstrated that for YP an increase in temperature from 26°C to 37°C may induce a 

transition from avirulent phenotype to virulence [38, 39].   

A scatter plot for the overlap of the two mRNA expression data sets, Figure 3 

demonstrates that, although both strains are of the Mediaevalis biovar, their response to 

the temperature increase is highly non-uniform.  The primary difference between the 

datasets is presence of Ca
2+

 cation in the medium.  Gene-expression data for Strain 201 

were derived from bacteria grown in a calcium-poor environment while the data for strain 

KIM5 are from samples grown in a Ca
2+

-rich (4mM) medium.  This single difference 

results in phenotypic variations that can explain the observed dissimilarities between the 

gene-expression results. The cellular behavior dubbed ‘low-calcium response’ (LCR) 

refers to the observation that following the transition from 26 to 37°C and in the absence 

of Ca
2+

 (conditions resembling mammalian intracellular environments [65], within one to 

two generations virulent strains of the bacteria undergo bacteriostasis.  It has been 

suggested that LCR is necessary for adaptation of YP to the intracellular host 

environment [66]. Start of LCR occurs under a narrow range of conditions. At 26°C, YP 

does not require specific amounts of Ca
2+

 to grow; however, at 37°C, a minimal Ca
2+

 

concentration of 2.5 mM is required to repress the LCR. 
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Using the available gene-expression data and GX-FBA, we analyzed the metabolic 

underpinnings for the observed phenotypic behaviors.  Computational simulations for 

strain 201 predict a significant decrease in cellular growth rate upon transition from 26°C 

to 37°C, while simulations of strain KIM5 find a growth rate at 37°C that is equal to that 

of 26°C (see Table 3).  These results are in good agreement with experimental 

observations [61, 62, 67, 68] despite the fact that GX-FBA does not directly manipulate 

nor optimize cellular growth rate. 

Metabolism of YP at 37°C in a low calcium environment 

As can be expected the onset of LCR in YP would lead to a great deal of metabolic 

change.  Our GX-FBA simulations of the temperature transitions in Ca
2+

-free and Ca
2+

-

rich aerobic TMH environments [69] also point to drastic differences in the metabolic 

activity  (See Figure 4, and Table 3).  The two most significant differences in genome-

scale metabolic activity pattern in the presence and absence of Ca
2+

 involve use of 

oxidative means for the generation of energy and metabolism of amino acids and fatty 

acids.  

In the LCR case, the oxidative portion of the TCA cycle is greatly down regulated and 

the organism relies more on the glyoxylate pathway to bypass this diminished process 

and convert the byproducts of glycolysis into malate and oxaloacetate.  This behavior 

makes sense for an organism preparing to enter bacteriostasis and reducing its energy 

demands.  

While transition from 26°C to 37°C elevates metabolism of some amino acids such as 

arginine, the onset of LCR reduces biosynthesis of some amino acids that are essential for 

growth (such as isoleucine, leucine and valine).  In case of arginine, the up regulated 
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pathways point to subsequent conversion of this amino acid to the metabolically more 

tractable compounds succinate and glutamate, and thus the process is clearly linked to the 

global carbon and nitrogen metabolism. 

In addition to being used as a carbon source, another possible reason for increased 

production of arginine could be the need to boost production of ornithine, which is a 

precursor for production of polyamines.  Polyamines are cationic organic compounds 

which modulate DNA, RNA and protein synthesis and are essential for cellular growth 

[70-73]: in YP, polyamines are also necessary for the production of biofilms in the flea 

gut and thus aid in the process of transmission from fleas to mammals [74].   However, 

more important for conditions that resemble intracellular environments, polyamines can 

act as free radical scavengers and protect the cell from oxidative damage [75].   

Furthermore, it is known that polyamines up-regulate the oxyR and katG genes in E. coli, 

which are responsible for the induction of catalase and peroxidase detoxifying enzymes 

[76].  GX-FBA results also suggest that the change in temperature leads to increases in 

the catalase-peroxidase activity in strain 201.  This activity is known to play a prominent 

role in aiding colonization of the host by helping the bacteria resist oxidative attacks of 

phagocytes [77].  The catalase or catalase-peroxidase activity is common to most 

pathogens, however experimental data have shown that this activity in YP is extremely 

high [78].  Thus the GX-FBA predicted increase in catalase-peroxidase activity is in 

agreement with known fact that resistance to reactive oxidative species (ROS) produced 

by macrophages is critical for YP during initial stages of infection [79].   Thus, it is 

plausible that the elevated rate of the arginine production following onset of LCR is an 

attempt by YP to combat oxidative stress.        
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In order to determine the primary causes for the reduced maximal growth rate in strain 

201, we systematically analyzed the effect of the mRNA expression value of each 

individual gene.  Although we observe reduced activity in energy metabolism, 

particularly oxidative phosphorylation (see Figure 4), our detailed analysis suggests that 

the noted diversion of amino acids toward energy consumption pathways is one the 

leading causes for the predicted reduced cellular growth rate.  For example, an increase in 

the activity of threonine dehydratase (EC. 4.3.1.19) leads to diversion of serine toward 

production of pyruvate and ammonia and away from production of biomass.  Threonine 

dehydratase plays a critical role in production of isoleucine and valine, however, since 

these amino acids cannot be produced by YP, the increased activity is directed toward 

catalyzing alternate reactions.  Note that, uncovering such drastic system level shifts in 

metabolism and assessing their importance on altering the bacterial growth rate is 

difficult purely from the analysis of gene-expression data and hence underscores the 

importance of using tools as GX-FBA to fully extract information from empirical data. 

Metabolism of YP at 37°C in a calcium rich environment 

Although the growth rate for YP in presence of Ca
2+

 does not differ between 26 and 

37°C, GX-FBA analyses indicate that there is a significant difference in YP metabolism 

between the two temperatures.  Particularly, our analyses indicate that upon transition to 

37°C and environments akin to human blood YP switches to an extensively profligate 

mode of metabolism.  It has previously been observed that metabolism of YP can be 

highly inefficient [80].  It initiates extensive uptake of metabolites from the medium and 

given that the growth rate is similar to that at 26°C, majority of these compounds are not 

used for production of biomass.   
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Although the pathways for production of fatty acids and glycerophospholipids (see 

Figure 4b and Table 2) are enhanced the products are not being used for biomass 

production.  Empirical analysis of the fate of these compounds could provide important 

new insight into bacterial objective during proliferation. 

 

Metabolic response to Antimicrobial agents 

Early treatment with antibiotics is an effective method of caring for plague patients.  Two 

of the antibiotics of choice for such treatment are Chloramphenicol and Streptomycin 

[81].  We used available microarray mRNA expression profile of YP (strain 201) 

following interaction with these two antibiotics [63, 64] to gain a better understanding of 

each antibiotic’s mode of operation.  The results of these studies are reported in Table 3 

and Figure 5.  Our model predicts that, if one focuses on metabolism alone, the 

interaction of neither antimicrobial agent fully halts cellular growth.  Following contact 

with both antibiotics, growth potential drops to about half of its wild-type value.  Since it 

is known that the primary targets of both of these antimicrobial drugs are protein 

production processes, and given the fact that our model does not explicitly account for 

the different stages of mRNA translation, our prediction of finite growth rates is not 

surprising. 

For Streptomycin the reduction is caused by changes in the activity of a number of 

critical energy producing pathways such as citric acid cycle and oxidative 

phosphorylation as well as some biosynthetic pathways such as those for production of 

purines and some amino acids (e.g. cysteine and methionine metabolism).  Interestingly, 

GX-FBA predicts that post treatment with Streptomycin, production of another set of 
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essential amino acids (leucine, isoleucine and valine) is increased.  Given the reduced 

growth rate of the bacteria, these amino acids must serve an alternate purpose than 

inclusion in microbial biomass.  Elucidating this role might aid in attenuating the 

bactericidal capacity of Streptomycin.   

Upon interaction with Chloramphenicol, the activity of nearly all of YP pathways that are 

crucial for synthesis of biomass including glycolysis, urea cycle, and pathways for 

production of fatty acids and lipopolysaccharides are reduced.   

Interestingly, our simulations show that following interaction with both antibiotics, 

pathways of riboflavin metabolism in YP are enhanced.  Some early studies [82-85] have 

shown that treatment with Streptomycin and some other antibiotics stimulates growth of 

rats receiving suboptimum amounts of riboflavin, thiamine and panthotenic acid.  It has 

been believed that antibiotic induced elimination of certain gut bacteria that compete for 

these compounds is the main reason for the growth stimulation.  However, our results 

seem to indicate that increased bacterial production of these compounds could also serve 

a stimulatory role.  

 

Common post-stress metabolic motifs  

As can be seen from figures 4 and 5 and Table 2, when comparing the metabolic activity 

of YP in the four experiments discussed above, we can identify only a small set of 

metabolic pathways for which the flux always either increased or decreased when 

compared with the pre-perturbation metabolism.  Metabolic activity for pathways (as 

defined by KEGG [86]) of purine and pyrimidine metabolism, alanine, aspartate and 

glutamate metabolism and tyrosine metabolism were constantly reduced when placed in 
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stressful environments.  

In YP, it has been shown that following a transition from ambient temperature to 37°C 

and a calcium deficient medium, the adenylate energy charge of the cells decreases [87].  

The results of our GX-FBA simulations seem to indicate that conservation of energy 

post-stress is a common adaptation strategy for YP.  The results indicate that for such 

conditions the cell ameliorates any energy shortcoming by reducing the rates of some 

unnecessary ATP-consuming reactions while simultaneously lowering the degradation 

rate of adenosine and other energy-carrying purine nucleosides.  The reduction in the rate 

of de novo purine biosynthesis has been attributed to the lowered rate of growth [61, 63].  

However, this explanation does not agree with the observation that significantly reduced 

mRNA expression levels in strain KIM5 at 37°C were not followed by a reduction in 

growth.  On the other hand, de novo biosynthesis of purines consumes significant 

amounts of energy.  Down-regulation of this pathway could be part of a cell-wide energy-

saving strategy. 

 

DISCUSSION 

To date, implementations of FBA have been incapable of addressing states of metabolic 

activity resulting from perturbations other than gene losses/additions, incorporation of 

genetic expression data based on Boolean logic [21-23, 26] or changes in nutrient 

availability.  Consequently, analyses of important mechanisms such as cellular stress 

response (CSR), which usually results in the induction of specific stress or shock 

proteins, have been outside the scope of genome-level metabolic investigations.    

CSR is a system-level response, and hence, any study of such phenomena that only 
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focuses on the altered activity of a handful of enzymes will overlook the cascading 

effects of gene-expression changes on the entire cellular metabolism.  In order to expand 

the utility of FBA genome-scale models toward solving such state transitions, we 

developed GX-FBA which combines hierarchical regulation imposed by gene-expression 

with the rigid constraint of metabolic reaction connectivity.  We have applied our 

methodology toward studying the metabolic response of bacterium Y. pestis to a number 

of environmental perturbations which are known to cause phenotypic changes, ranging 

from induction of virulence to cellular death.   

One of the first questions about the utility of GX-FBA that has to be answered involves 

verification that the constraints imposed by network connectivity alone have the ability to 

partially mimic metabolic regulation, and if need be, oppose the dictum of hierarchical 

regulation.  Through imposition of soft internal constraints (i.e. no lower/upper flux 

boundaries for upregulations/downregulations respectively) on a network by GX-FBA 

(see Methods), the behavior of a reaction can oppose hierarchical directives.     

This flexibility of GX-FBA is far from a weakness and can indeed be used to aid in 

identifying reactions in a pathway that might be least susceptible to hierarchical 

regulation in response to a given environmental condition.  In order to illustrate this 

capability of GX-FBA, we used available flux measurements for S. cerevisiae [50] to 

examine the quality of the computationally predicted fluxes (Figure 2).  Our results show 

that, for an optimal GX-FBA objective function, our predictions on average display a 

percentage error in predicted flux change when compared to experimentally measured 

flux changes of only e = 21%. 

A number of studies have shown that in some cases there is not a strong correlation 
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between mRNA expression levels and protein abundance [88-90].  Such inconsistencies 

can also be found between proteomic and transcriptomic results for yeast [50] and YP 

[38, 61]. For the GX-FBA simulations of yeast metabolism, the majority of such 

inconsistencies were resolved and the models correctly predicted the directions of flux 

change.   

Given that our GX-FBA methodology can predict some of these differences, we surmise 

that network connectivity can serve as an appropriate constraint for ensuring that GX-

FBA does not summarily impose hierarchical regulation on the network, since network 

connectivity is a critical component of metabolic flux regulation. 

Cellular stress response 

Environmental perturbations usually cause a cellular response that is characterized by 

adjustments in genetic expression levels and cellular physiology.  This rearrangement, if 

successful, permits the cell to adapt to the new environment.  Study of cellular response 

mechanisms to external changes provides the basis for addressing questions related to 

cellular robustness and opens the possibility to identify drug targets.   To date, studies on 

cellular stress response have primarily focused on the identification of expression 

patterns (either in transcriptome or proteome) and how these translate into system-wide 

effects on the metabolome, fluxome, and ultimately, realized cellular phenotypes.   

 

1.  Yersinia pestis' metabolic response to temperature changes    

The flea/host/flea life cycle of YP forces the bacteria to adapt to two environments that 

differ in temperature and nutrient levels.  Analysis of YP's acclimation from ambient 

temperature in the flea gut to 37 °C in the mammalian host can provide us with 
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information about how the cell prepares for inducing virulence and combating the host’s 

defenses. 

Our analyses suggest that immediately following introduction into the host and 

encapsulation within a phagocyte (i.e. environment with a low concentration of Ca
2+

); the 

YP cell's primary metabolic response involves reducing the activity of most prominent 

producers of ROS, most notably oxidative phosphorylation.  The reduced rate of ATP 

production via ATP synthase coupled with increased energy demand associated with 

CSR can explain the observed depletion of the ATP pool in stressed cells [87, 91-93].  As 

a result, the cell attempts to conserve energy by reducing the activity of non-essential 

reactions and pathways.  Production of purines is one such process which can be 

metabolically compensated by reduced rate of nucleotide degradation.  Concomitant to 

decreased ROS production, the cell increases the activity of enzymes (e.g. catalase-

peroxidase) that protect cellular macromolecules from harmful interactions with ROS 

such as hydrogen peroxide.  The cell also starts utilizing some amino acids such as 

arginine and serine as sources of carbon. 

In nutritionally rich environments which contain sufficient quantities of Ca
2+

, YP initiates 

a highly wasteful metabolic strategy whereby generation of energy via oxidative means is 

favored.  The cell downregulates pathways for production of some nitrogen-based 

compounds and instead scavenges these compounds from the host medium. 

2.  Yersinia pestis' metabolic response to Antimicrobials    

Analyses of the predicted metabolic profiles resulting from subjecting YP to 

Streptomycin and Chloramphenicol provide a better insight into the effects of these 

antimicrobial agents on the energy economy of the cell.  Focusing on the reduced rate of 
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growth in the presence of Streptomycin, we identify reduced activity of oxidative energy 

production pathways, as well as reduced production of key biomass components such as 

purines and amino acids as the responsible processes (see Figure 5a).  However, unlike 

metabolic augmentations after treatment with Chloramphenicol, activities of metabolic 

pathways that are linked to production of cellular membrane are not drastically altered.  

This is an intriguing observation by itself, as it is known that part of the bactericidal 

action by Streptomycin is to permeabilize the cellular membrane [94, 95].     

GX-FBA simulations predict that interaction with Chloramphenicol leads to extensive 

decrease in nitrogen metabolism of the cell.  Pathways producing amino acids and 

nucleotides are particularly downregulated (see Figure 5b).  Also as noted the activity of 

pathways associated with production of cellular membrane are reduced.   

Interestingly, the only process which is upregulated upon interaction with antibiotics is 

the pathway for metabolism of riboflavin (see Figure 5a,b).  This upregulation diverts 

some of the GTP needed for biomass production.  Thus increased production of 

riboflavin coupled with reduced production of purines contributes to the predicted 

diminishing of growth rates.  The enhanced rate of riboflavin production also provides an 

intriguing alternate explanation for an empirical observation.  During the 1950’s it was 

observed that certain antibiotics, including streptomycin, stimulate growth in rats whose 

diet is deficient in certain forms of vitamin B [82-85].  It was generally agreed that the 

vitamin-sparing effects of antibiotics resulted from alterations to the intestinal flora.  

While some believed that antibiotics decrease the number of bacteria, and hence reduce 

competition for scarce resources [83], others had theorized that antibiotics might increase 

the rate of synthesis of some types of vitamin B [85].  Given the fact that Y. pestis is 
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closely related to enterobacteria via its progenitor Yersinia pseudotuberculosis, the result 

of our simulations seem to lend credence to the latter hypothesis as a possible factor for 

how antibiotics relieve vitamin B deficiency in mammals.  

Finally, for both Streptomycin and Chloramphenicol, the activities of a majority of the 

TCA cycle reactions do not change drastically.  In contrast, a majority of the reactions 

associated with oxidative phosphorylation are downregulated.  This is unexpected since 

recent work by Kohanski et al [96] have shown that treatment with bactericidal 

antibiotics (such as Streptomycin) leads to increased oxidative phosphorylation and 

production of superoxide anion which leach irons from iron-sulfur clusters in E. coli and 

S. aureus.  Availability of this iron in the cell leads to production of hydroxyl radicals via 

Fenton reaction, and these deleterious compounds are believed to be the most significant 

contributor of cellular death among ROS.  However, the results of our simulations and a 

detailed examination of measured gene-expression levels in YP following interaction 

with Streptomycin clearly show that genes associated with oxidative phosphorylation 

(particularly those for NADH dehydrogenase) are significantly downregulated.  This 

suggests that an examination of metabolism of hydroxyl radicals in YP could highlight 

either exceptions to the reported mechanism of cellular death by bactericidal antibiotics 

or could find alternate means for generation of this ROS. 

3.  Common cellular stress motif 

We grouped the metabolic reactions that behave similarly under the four stress conditions 

based on function and pathway affiliation to uncover a possible global stress-response 

strategy in YP.  Overall the metabolic activity of only a handful of pathways was 

similarly altered among all 4 conditions.  GX-FBA predicts that for all examined 
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perturbations the metabolic activity of pathways of metabolism for purines, pyrimidines 

as well as amino acids alanine, aspartate, glutamate and tyrosine were constantly reduced. 

The likely consequence of these motifs is conservation of energy.  This is in agreement 

with the observation that CSR is usually accompanied by exhaustion of cellular ATP pool 

[87, 91-93], as the energetic requirements of protein degradation, chaperoning, and DNA 

repair are very taxing on the cell’s energy metabolism.  GX-FBA predicts that YP cells 

partially ease this strain by decreasing rates for some ATP consuming reactions.  

The reduced production of purines after stress has previously been ascribed to lowered 

growth rates [61, 63] and a reduced demand for these metabolites.  However, this 

explanation does not agree with the observed reduction in purine production in KIM5 

since no significant changes in cellular growth were detected [62].  We propose an 

alternative explanation based on the thesis that the cell attempts to conserve energy post-

stress:  The process of de novo purine biosynthesis consumes considerable energy.  

Production of Inosine 5'-monophosphate starting from ribose 5-phosphate demands five 

molecules of ATP.  Hence, reduced de novo production of purines could be part of the 

cellular energy conservation efforts. 

 

CONCLUSION 

In summary, we have developed a new method to combine microarray data with a 

constraint-based formalism to gain deeper understanding of the system-level metabolic 

behavior of cells following a wide range of perturbations.  Applying our framework to a 

large-scale model of metabolism in the gram-negative bacterium Yersinia pestis to study  

CSR and metabolism of this pathogen as it transitions between host and vector 
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environments and combats deleterious effects of antibiotic treatment, we find that the cell 

primarily tries to conserve energy while maximizing import of needed metabolites.  Our 

efforts also show that by using methodology the successfully couple gene-expression data 

to system-level models of metabolism we can glean new insights that might not be 

readily discernable through other means. 
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FIGURES 

 
Figure 1.   Example of the GX-FBA approach.   
a) An abbreviated model of central carbon metabolism with glucose (GLU) as the sole 

nutrient source with a fixed 12 ATP maintenance cost.  FBA predicted fluxes in blue, 

flux constraints in red.  b) A 2D schematic of possible FBA flux regions for reactions 2 

and 5.  The feasible flux region is shaded yellow, and the maximal growth solution is 

marked “FBA solution.”  Non-growth associated maintenance cost implies that the flux 

through the glycolytic reactions (1 & 2) cannot be zero.  c) GX-FBA predicted fluxes 

(blue) using the gene-expression regulation (green numbers where  signifies up-

regulation, and  down-regulation).  d)  GX-FBA feasible flux region (yellow) with 

optimal flux state marked “GX-FBA solution.”  The optimal direction is determined by 

the optimal FBA state and the qualitative pattern of mRNA expression (up or down). 
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Figure 2.  Assessment of GX-FBA method using experimental data on yeast 

metabolism.   
Distribution of GX-FBA predicted quantities in response to 25,000 random samples of 

degenerate FBA optimal states: a) Precision and recall of GX-FBA predictions, b) 

maximal ZGX-FBA objective function, c) growth rate variation (normalized to peak value). 
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Figure 3.  Gene-expression response to virulence induction.  
Scatter plot of mRNA expression data for genes common to Han et al. [61] and Motin et 

al. [62].  Similar expression values are clustered along the diagonal.  Note that both 

analyzed strains belong to biovar Mediaevalis. 
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a 

 

b 

Figure 4. Predicted change in metabolic pathway activity following temperature 

change.  
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GX-FBA predicted change in activity of select pathways in Y. pestis biovar Mediaevalis 

in response to change in temperature from 26°C to 37°C: a) for strains 201 under LCR 

conditions and b) for strain KIM5 in a Ca
2+

 rich environment.  Blue=flux decrease, 

red=flux increase, green=flux did not increase or decrease by at least a factor of 2.  The 

graph is made using the iPath2 program [97] and the width of the lines (w) is set to: 
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a 

 

b 

 

Figure 5. Predicted change in metabolic pathway activity following interaction with 
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antibiotics.  
GX-FBA predicted change in activity of select pathways in Y. pestis strain 201 in 

response to interactions with antimicrobials a) Streptomycin and b) Chloramphenicol.  

Color scheme and width formula are similar to Figure 4. 
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Table 1.  Statistics for the four sets of mRNA expression data used in our analyses.  The 

number of up/down regulated genes in the GX-FBA simulations differs from the number 

of genes present in the model because of the imposed selection criterion (see Methods). 

Form of stress # of 

transcripts 

# of genes 

in the 

model 

# of genes 

up/down 

regulated 

# of 

affected 

reactions 

% of total 

active 

reactions 

Temperature change, 

    strain 201 

259 80 68 65 13 

Temperature change,  

    strain KIM5 

507 207 138 202 41 

Streptomycin 345 131 110 153 31 

Chloramphenicol 738 207 183 267 54 
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Table 2.  GX-FBA predicted changes to activity of reactions in various metabolic 

pathways (as defined by KEGG) following temperature changes from 26 °C to 37 °C in 

low (strain 201) and high calcium (strain KIM5) medium and in presence of antibiotics.  

The color scheme is the same as that for Figures 4 and 5.  

 

Pathway 201 KIM5 Streptomycin Chloramphenicol 
Glycolysis / 

Gluconeogenesis  
   

Citrate cycle (TCA 

cycle)  
   

Pentose phosphate 

pathway  
   

Pentose & 

glucuronate 

interconversions  

   

Galactose metabolism     
Fatty acid 

biosynthesis  
   

Fatty acid metabolism     

Purine metabolism     
Pyrimidine 

metabolism  
   

Alanine, aspartate & 

glutamate metabolism  
   

Glycine, serine & 

threonine metabolism  
   

Cysteine & 

methionine 

metabolism  

   

Valine, leucine & 

isoleucine degradation  
   

Valine, leucine and 

isoleucine 

biosynthesis  

   

Lysine biosynthesis     

Lysine degradation     
Arginine & proline 

metabolism  
   

Histidine metabolism     

Tyrosine metabolism     
Tryptophan 

metabolism  
   

Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis  

   

beta-Alanine 

metabolism  
   

D-Glutamine & D-

glutamate metabolism  
   

Glutathione 

metabolism  
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Lipopolysaccharide 

biosynthesis  
   

Glycerophospholipid 

metabolism  
   

Pyruvate metabolism     
Propanoate 

metabolism  
   

Butanoate metabolism     
One carbon pool by 

folate  
   

Riboflavin 

metabolism  
   

Folate biosynthesis     

Nitrogen metabolism     

Sulfur metabolism     
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 Table 3.  Model predicted normalized growth values (with respect to wild type growth at 

26 °C) for Y. pestis after imposition of additional constraints based on mRNA expression 

data. 

 

Form of stress Normalized growth range 

Temperature change 26°C to 37°C, YP 201, [Ca
2+

]≈ 0 mM 

Temperature change 26°C to 37°C, KIM5,[Ca
2+

]= 4 mM 

Antibiotics:  Streptomycin 

Antibiotics:  Chloramphenicol 

0.13-0.13 

1.0-1.0 

0.50-0.50 

0.47-0.47 
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